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The differential mass balance equations were derived for a catalytic reaction governed by an ar
bitrary kinetic equation in a catalyst pellet. The multicomponent diffusion in the transition 
region was described alternatively by the diffusion equation (2) (model I) or simple Fick's equa
tion (3) (model II). The diffusion equations provide also mutual concentrations of individual 
species in the reaction mixture in a given position in the pellet and the conditions of a proper 
selection of the key (balanced) species. The effective reaction rates and the effectiveness factors 
of hydrogenolysis of cyclopropane on cylindrical Pd/ Al z0 3 catalyst pellets were measured in 
a circulating differential reactor at 20 and 40°C. The experimental data were used to determine 
the geometrical factor of the pellet based on model I and II. It turns out that model I is somewhat 
superior to model II and that the mean pore radius, determined as an integral mean of the fre
quency curve of the pore distribution, provides more consistent results than the Wheeler radius. 

Although in the majority of real catalytic reactions diffusion takes place in the tran
sition region and the reaction mixture is often muIticomponent, the attention has 
been focused predominatIy on cases where either the reaction rate depends on con
centration of a single species, or, the diffusion is described by a simple form of the 
Fick law (the Knudsen or molecular diffusion). In this paper we have applied alter
natively two models of the multicomponent reaction in the transition region of diffu
sion and compared them with experimental results. As a model reaction we took 
hydrogenolysis of cyclopropane which proceeds on the Pdf Alz0 3 catalyst quite 
selectively giving rise to a single product - propane. The kinetics of this reaction 
can be studied at temperatures close to the room temperature1

• 

THEORETICAL 

Diffusion equation. In the derivation we shall assume that for the model reaction 

(1) 
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the true porous structure of the catalyst can be replaced by a pseudo-homogeneous 
structure. In addition to the reacting species i = 1, ... , p the mixture may contain 
also inert components (i = q, ... , n). Two alternative equations shall be considered 
to express the diffusion flux of the species Ai in a multicomponent mixture 

(2) 

analogous to the relation for a binary mixture and 

(3) 

formally identical to the Fick law. The effective diffusion coefficients, Di , defined 
by Eqs (2) and (3), include a geometrical factor ejq (porosit¥jtortuosity) to account 
for the fact that the pores represent only a fraction of the cross-section of the porous 
structure, and, further, that the pores are generally longer than the dimension of the 
pellet. The diffusion characteristic proper is then the coefficient fl), 

(4) 

which may be viewed as a diffusion coefficient of the species Ai in a multicomponent 
gas mixture. For isobaric diffusion of the species Ai in a multicomponent gas mixture 
in the transition region of diffusion one can write2 - 5 a relation analogous to the 
Stefan-Maxwell equation which in an one-dimensional case has the form 

n 

-cT(dy;jdx) = [N;j(ejq) fl)ki] + I [lj(ejq) .@ij] (yjNi - YiNj). (5) 
j=l 

The binary diffusion coefficient of the pair A i-Aj, .@ij ' is assumed to be concentra
tion-independent. The Knudsen diffusion coefficient of the species Ai in a circular 
pore of radius r is given by 

(6) 

For stoichiometry reasons the diffusion fluxes are related by 

NJrti = const. (i = 1, ... , p) . (7) 

For the inert species we have clearly 

Ni = 0 (i = q, ... , n) . (8) 
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With the aid of the stoichiometry coefficients 

(9) 

the diffusion flux of an arbitrary species can be expressed in terms of the flux of the 
key species Al 

N j = ajN 1 (i = 1, .. . , p) . (10) 

Combining Eqs (5), (8) and (10) we get 

- (e/q) cT(dyddx) = Nl[ad~kj + ± (yja j - yjaj)/~ij + aj I Yi/~ij] i = 1, ... , n, 
j= 1 j=q 

(11) 

where for inert species by definition aj = 0 (i = q, .. , n). Combining Eq. (11) with 
Eq. (2) and using relations (7) and (8) we get for the diffusion coefficient of species 
Ai in the multicomponent mixture in the transition region 

n p 

g i = (a j - ayJ/[aJgki + I (YPi - YiaJ/~ij + aj I Yjgij] i = 1, . 00' n, (12) 
j=l j=q 

where 

(13) 

is the change of the mole number due to reaction. As it is apparent from Eq. (12), 
the diffusion coefficient ~i (and hereby D;, see Eq. (4)) depends on composition 
of the reaction mixture and thus on the position within the catalyst. Since the differen
tial mass balances assume constant diffusion coefficient within the whole volume 
of the pellet, some average value of this coefficient must be used. For simplicity we 
shall assume the concentration dependence of the diffusion coefficient along the pore 
to be weak and replace the average by the value on the outer surface (subscript s) 

of the pellet: ~is = gi(Yis), or Dis = Di(Yjs)' 

Relations between concentrations within the pellet. The reaction rate in the balance 
must be expressed in terms of concentration of the balanced (key) species. Thus the 
relations are needed between concentrations of individual species appearing in the 
reaction rate term, and the concentration of the balanced (key) species in a given 
position within the pellet. Combining the diffusion equation (2) for the i-th species 
with that for the key species (i = 1) and using the stoichiometry relations (10) we 
arrive at the following differential equation relating the mole fractions of both 

species Yi = ybl) 

i = 1, ... , p. (14) 
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On integrating the last differential equation together with the boundary conditions 
fixing the mixture composition at the outer surface (for Y1 = Yis' Yi = YiS) and 
assuming the ratio of the diffusion coefficients D I ! Di to be concentration-independent, 
the concentration relations of the type Yi = Yi(YI) are obtained 

Yi = (ada) {1 - [1 - (aYis!a i)] [(1 - aYl)!(l - aYIS)]DI /DI} , i = 1, . '" p. 

(15) 

Considering that the stoichiometry coefficients ai of the inerts (i = q, ... , n) equal 
zero, Eq. (15) can be simplified to give 

i = q, ... , n. (16) 

In a similar way leading to Eqs (15) and (16) from Eq. (2), one can obtain from Eq. (3) 
the following relations 

i = 1, ... , p. (17) 

For inert species (a i = 0) we find easily that Yi = Yis (i = q, ... , n). While the diffu
sion equation (3) leads to a linear expression between the concentrations (Eq. (17)), 
an analogous expression based on the diffusion equation (2) is a non-linear one 
(E~. (15). 

The choice of the key component. The choice of the key species for a multi compo
nent reaction with several reactants may not be quite straightforward. For a bimo
lecular reaction aA + bB = ... , for instance, one can take for Al either A or B. 

In diffusion problems in porous catalysts this arbitrariness is somewhat limited 
by the requirement that the mole fractions (concentrations, partial pressures) of the 
remaining reactants ("non-key species") must not take negative values. Since the 
mole fractions of all reactants decrease toward the pellet center, it is necessary that 
in a position where the concentration of the key species vanishes the concentrations 
of the remaining reactants must satisfy the constraint Yi ~ 0 (i = 2, ... , k, where k 
is a subscript of the last reactant Ak) . On implementing this stipulation in the relations 
for mole fractions of the reactions species (Eq. (15) or (17) one can formulate ne
cessary conditions for proper choice of the key species. In case of non-linear relations 
between concentrations (Eq. (15» and reactions with an increase in the mole number 
(a < 0), a proper choice is indicated by the following none quality containing the 
ratio of the diffusion coefficient and the stoichiometry coefficients 

(18) 
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For a reaction' with a decrease in the mole number (a > 0) this condition takes 
the form 

(19) 

In order that the exponentiation to a rational positive exponent D1! Di be defined 
one must have necessarity 1 - aYls ~ 0. 

When using linear relations between concentrations (Eq. (17)) the necessary condi
tion of a proper choice of the key species is then 

(20) 

The mass balance for an isothermal catalyst pellet. The mass balance on the key 
species Al in a one-dimensional catalyst pellet (infinite slab w = 0, infinite cylinder 
w = 1, sphere w = 2) may be written as 

(21) 

When using Eq. (2) for the diffusion flux Nl the differential mass balance (model I) 
has the form 

- + - - + --- = Mw(1- He)f(e). d
2
c de [w H de] 2 

dx 2 dx X 1 - He dx 
(22) 

The dimensionless concentration of the key species, e, is defined as e = Yl!Yls; 
the dimensionless coordinate x so as to have x = 0 in the center and x = 1 on the 
surface of the pellet. The dimensionless reaction rate, f(e), is related to the rate 
on the pellet surface (R ls), by f(e) = R 1(e)!R 1s' The parameters Mw and H are defined 
as follows 

(w = 0, 1,2) 

H = aY1s. 

(23) 

(24) 

In case of the catalyst pellet forming a slab, the characteristic dimension, 10, appearing 
in the Thiele modulus, equals one half of the slab thickness; for an infinite cylinder 11 
is its radius; for a sphere 12 is its radius. 

The boundary conditions pertaining to Eq. (22) have a familiar form 

x=o e = 1, 

x = 1 de!dx=O. 
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The parameter H appearing in Eq. (22) characterizes the effect of the change of the 
number of moles due to reaction. Its value is affected both by the change of the 
number of moles and the concentration of the key species on the outer surface of the 
pellet (Yls). (The same parameter has been used e.g. by Week mann and Gorring6

.) 

As a condition for the existence of exponentiation to Dd D j we found in connection 
with Eqs (18) and (19) that 1 - H ~ O. Since a > 0 for reactions with a decrease 
in the mole number, H must be in the interval 0 ~ H ~ 1. For reactions with an 
increase in the mole number a < 0 and H is therefore delimited by H ~ O. 

If one uses Eq. (3) to define the diffusion flux in the mass balance (21) the following 
differential equation (model II) is obtained 

d2cjdx2 + (wjx) dcjdx = M!f(c), (27) 

where w, Mw and f(c) have the same meaning as those in ~q. (22). The boundary 
conditions (25) and (26) remain also unchanged. It is seen that Eq. (27) is a special 
case of Eq. (22) for H ---+ 0, i.e. for a reaction with no change in the mole number. 

The effectiveness factor. The effectiveness factor, 'Y/w, is currently defined as a ratio 
of the amount of the key species penetrating in the pellet through the outer surface 
to react to that which would react in the absence of the diffusion effects. From the 
diffusion equation (2) and the definition one can arrive at the following expression 
(model I) for the effectiveness factor 

rtw = [(w + l)jM!] [ - c/(l)jU - H)] • (28) 

This equation enables the effectiveness factor to be determined from the gradient 
of the dimensionless concentration of the key species at the outer surface of the 
pellet, c/(l). Using Eq. (3) the expression for the effectiveness factor takes the form 
(model II) 

'1w = [(w + l)jM!] [ - c/(l)] , (29) 

which is a limiting expression of Eq. (28) for H ---+ O. In case of a strong diffusion 
effect the boundary condition (26) for an irreversible reaction can be replaced to 
a fair approximation by 

x = l, c = O. (30) 

The approximation is the better the higher the value of the modulus Mw' For a high 
value of the modulus one can further simplify the balance equations (22) and (27). 
Substituting e.g. v = Mw(1 - x), Eq. (22) takes the form 

- + - - - - + -- - = (1 - Hc)f(c). d
2
c W dc H (dc)2 

dv 2 (Mw - v) dv 1 - Hc dv 
(31) 
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(Eq. (27) changes by this substitution into one obtained from Eq. (31) by the limit 
H --+ 0). For high values of the modulus Mw the second term on the left hand side 
of Eq. (31) may be neglected and in region of strong diffusion effect (asymptotic 
region) there results after changing over to x (model I) 

- + -- - = M;(1- Hc)f(c) dZc H (dC)Z 
dx z 1 - Hc dx 

(32) 

For H --+ 0 Eq. (31) gives 

(33) 

which describes the diffusion effect in region of strong inner diffusion provided that 
the diffusion flux is given by Eq. (3) (model II). 

Eqs (32) and (33), excepting the definition of M w , are identical to the balance 
equations for a slab. ' The cause is that under strong effect of internal diffusion the 
reaction takes place only within a thin shell below the outer surface of the pellet. 
The thinner the shell relatively to the pellet diameter the better the approximation 
of the pellet geometry to an infinite slab, for which we have Eq. (22) or (27) with 
w = O. Substituting p = dc/dx the differential equations (32) and (33) can be 
transformed into a linear differential equation of the first order and integrated 
analytically. With the aid of the boundary conditions (25) and (30) one can obtain 
an expression for the gradients of the rela~ive mole fraction of the key species on the 
outer surface of the pellet, c'(l) necessary to evaluate the effectiveness factor from 
Eqs (28) and (29). For the diffusion equation (2) the effectiveness factor in region 
of strong internal diffusion, 11:, is given (model I) as 

11: = ~J([2fl ~J)' Mw 0 1 - Hc 
(34) 

With the diffusion being described by Eq. (3) the expression for the effectivenes factor 
(model II) takes the form 

(35) 

Similarly as in the preceding equations, Eq. (35) is a special case of Eq. (34) for 
H--+O. 

The kinetics of hydrogenolysis of cyclopropane. The kinetics of the selective 
hydrogenolysis of cyclopropane to propane on a Pdf Alz0 3 catalyst has been studied 
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recently in this laboratoryl,? on the same catalyst as that used in this work. The best 
kinetic equation found by nonlinear regression of the experimental data at 20°C was 

(A cyclopropane, B hydrogen, C propane, k = 46-6 mol!h kgca!> KA = 35-1 atm-I, 
KB = 5898 atm -1, Kc = 23-0 atm -1). The best equation at 40°C was 

(37) 

(k = 250-0 mol!h kgcat, KB = 2-3atm-\ Kc = 0-067atm- 1
)_ To determine the 

activation energy, the constants of the following reaction rate equation were used 

fitting well in the whole temperature interval covered by the kinetic study (0-40°C)_ 
The resulting activation energy was 10-2 kcal!mol; the adsorption enthalpy of hydro
gen following from the adsorption coefficients of Eq_ (38) was -3-5 kcal!mol. 
The value for propane was -3-3 kcal!mol. 

EXPERIMENTAL 

The chemicals and their purification were the same as those in the kinetic study1.? 

Catalysts pellets_ 20 X 20 mm (height X diameter) catalyst pellets were prepared from fine 
grain catalyst (2% Pd/Alz0 3) on a hydraulic press_ The apparent density of the pellets was 
1-987 ± 0-007 g/ml_ The size of the catalyst grain prepared for the purposes of the kinetic studyl.? 
by crushing the pellets was 0·09 - 0·2 mm. In order to facilitate removal of the pellets from 
the mould the walls of the mould were treated with ether solution of stearic acid. The surface shell 

TABLE I 

Physical Properties of the Catalyst 

Surface area (BET, adsorption of benzene at 20°C) 
Apparent density (mercury pycnometry) 
Density (helium pycnometry) 
Volume of pores (by adsorption) 
Porosity (apparent density X pore volume) 
Macro-pore porosity (pores greater than 100 A) 
Effective thermal conductivity (from the limiting temperature differences 

and cooling curves9
) 

163 mZ/g 
1·214 cm3 /g 
3·140 cm3/g 
0·505 cm3 /g 
0·613 cm3/cm3 

0·354 cm3 /cm3 

5·2. 10- 4 caljcrn 
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of the pellets was worked on the lathe to the final dimensions (20·0 ± 0'01) X (20·0 ± 0'01) mm. 
Physical properties of the catalyst are summarized in Table I. The frequency curve of the pore 
distribution within 20 - 800 A was computed by the Roberts method lO from the desorption 
branch of the adsorption isotherm of benzene at 20°C. The pore distribution between 75 and 
75000 A was determined by mercury porosimetry (Carlo Erba Porosimeter, Model 65A). The 
full frequency curve, obtained by combining both distributions, is shown in Fig. 1. The homoge
neity of the prepared pellets was tested by measuring physical properties and catalytic activity 
of samples taken from various parts of the pellet. 

The reduction of pellets was carried out in an auxiliary bath at 200°C in hydrogen (50 ml/ min) 
for 120 hours directly in the reactor designed for measuring reaction rates on the pellets. In 
contrast to the kinetic region l .? the catalytic activity was constant for only about 10 hours. 
The deactivated pellets could be reactivated by the reduction procedure. 

Apparatus. The reaction rates on the catalyst pellets (the effective reaction rates) were measured 
under atmospheric pressure in a continuous circulating reactor (Fig. 2) under steady state. The· 
reactor was a glass vessel (inner diameter 32 mm) containing the catalyst pellet 10 and connected 
by spherical ground joints 5 to a circulating pump 3. The temperature of the circulating gas was 

lO 

dV/dlogr 

05 

10 20 30 50 100 200 

r; A 

FIG . 1 

Frequency Curve of the Pore Size Distribu
tion 
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FIG. 2 

Differential Circulating Reactor 
1 Electromotor, 2 drive, 3 pump, 4 cock, 

5 12 mm spherical joint, 6 cooling coil, 
7 reaction mixture inlet, 8 reaction mixture 
outlet, 9 stop valves, 10 catalyst pellet, 11 
thermometer, 12 silicon-rubber tube, 13 
32/ 28 mm joint, 14 preheating coil, 15 reactor, 
16 bath. 
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measured by a mercury thermometer 11 the bulb of which reached about 1 cm above the pellet. 
Glass cocks 4 were used to close the reactor after the reduction of the pellet had been completed 
and to flush the pump before beginning the kinetic measurements. The glass reactor was submerged 
in a thermostated bath held at a prescribed temperature. The two-stage pump 3 was made of 
stainless steel; the balanced rotors were supported on ball bearings. The rotation motion was 
transmitted by a magnetic clutch consisting of two permanent magnets separated by walls of the 
circulating pump made of diamagnetic steel. The r.p.m. of the pump could be varied continuously 
between 2500 and 5000 min -1. Fig. 3 plots the characteristic of the pump (curve 1) at 4700 r.p.m. 
used for measurements and for an equimolar mixture of cyclopropane and hydrogen. The operat
ing line of the glass reactor proper (curve 2) intersects the pump characteristic in the operating 
point corresponding to the rate of circulation of about 201/ min. Depending on composition 
of the reaction mixture the rate of circulation ranged between 15 and 251/ min. The gas components 
of the reaction mixture were purified and their flow rates measured by capillary flow-meters. 
The purification of individual components of the reaction mjxture as well as the whole mixture 
was carried out by identical methods as those in the kinetic study of hydrogenolysis of cyclo
propane in the kinetic region1

,7. The chromatographic analysis of the effluent mixture was also 
the same. In order that we could vary the partial pressures of cyclopropane and hydrogen inde
pendently, the reaction mixture was in some experiments diluted by nitrogen before entering 
the reactor. 

The effective reaction rate of cyclopropane was determined from the following equation valid 
for a perfectly mixed reactor 

(39) 

According to the literature11
-

14 a perfectly mixed reactor is one where the ratio of the recycle 
to the feed rate is greater than about 20. In our case this ratio was equal to several hundreds 
depending on experimental conditions. The assumption of ideal mixing was tested experimentally 
by a series of experiments with variable rate of circulation. A part of the experiments is shown 
in ' Fig. 4. From the figure it is apparent that at the rate of circulation above 15 I/min the conver
sion is independent of the circulation rate. This confirms the idea! character of mixing in the 
reactor, but also the fact that the heat and mass transfer between the bulk of the reactor and the 
outer surface of the pellets is insignificant. A similar conclusion can be drawn from the experi
mental finding indicating that the effective reaction rate was not affected by position of the pellet 

TABLE II 

Binary Diffusion Coefficients g}jj (1 atm) (cm2 /s) 

Components i-j 

Cyclopropane-hydrogen 
Cyclopropane-nitrogen 
Cyclopropane-propane 
Hydrogen-nitrogen 
Hydrogen-propane 
Propane-nitrogen 

20°C 

0-464 
0·121 
0·063 
0·737 
0'434 
0·112 

40°C 

0·516 
0·136 
0·072 
0·825 
0·489 
0·135 
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within the reactor. Owing to the aging the catalyst activity had to be tested by standard experi
ments. In cases of a minor deactivation the effective reaction rate was corrected computationally 
on the original activity. Since the activity of individual catalyst pellets was slightly fluctuating, 
all effective reaction rates were related to the average initial activity of the pellets. The set of the 
effective reaction rates under standard conditions was used to determine the experimental error: 
at 20°C the standard deviation amounted to 14% of the average effective reaction rate. 

The binary diffusion coefficients of individual pairs of the reacting species were computed from 
the Hirschfelder equation15 with the aid of the Lennard-lones force constants recommended 
by Satterfield16. The results are summarized in Table II. 

The Knudsen diffusion coefficients were computed from Eq. (6) for the average pore radius 
62 A, following from Wheele's relation1 ?, and 836 A, which is an integral mean of the frequency 
curve from Fig. 1. The diffusion coefficients for cyclopropane in the multicomponent reaction 
mixture £ZA (or £ZAs) were computed for the same radii from Eq. (12). The ratios £ZA/£Zi (or 
£Z As/£Zis), appearing in the relations for mole fractions (Eqs (15), (17), see Eq. (4)), were evaluated 
only for the average radius 836 A since a numerical analysis? has revealed their virtual indepen
dence on the radius. 

The differential mass balance. The mass balance equation derived in the preceding part of this 
paper assumed an isothermal pellet. The importance of internal heat transfer can be judged18 

for instance from the maximum temperature difference, ,iTrnax , between the center and the outer 
surface of the pellet from equation 

200.--------,---------r---, 

100 

50 

10 20 
Q,.Umin 

FIG. 3 

Pumping Capacity of the Circulating Pump 
20°C, 4700 r.p.m., hydrogen--cyclopropane 

1 : 1. 1 Pump characteristic, 2 operating line 
of the reactor. 
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0.4.------.------.., 

x 

0.3 

10 20 30 

Q,I/min 

FIG. 4 

Cyclopropane Conversion versus Rate of 
Circulation 

1 FA/W= 12'9mol/hkgcat' p~=p~= 
= 0·5 atm, 2 FA/W= 21·52 mol/h kgc• t , 

p~ = 0·85 atm, p~ = 0·15 atm. 
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It turned out that the maximum temperature difference under our experimental condition was 
always smaller than 2°C and the heat transfer within the pellet may thus be safely neglected. 
The choice of the key species was tested for all experimental points according to Eqs (18)-(20); 
as the key species was always found cyclopropane (A) even in case of its stoichiometric surplus; 
(The subscripts must therefore be assigned as follows: i = 1 for cyclopropane, (A), i = 2 for 
hydrogen, (B), i = 3 for propane, (C». This is due to the fact that even at a relatively large 
surplus of hydrogen (B) £<lBs < £<lAs (see Eq. (20». The expressions for the dimensionless re
action rate appearing in Eq. (22) are obtained in the sense of the definition of f(c) from the rate 
equations (36) (20cC) or Eq. (37) (40cC) using Eq. (15), (model I) . When using Eq. (27) the mole 
fractions are given by Eq. (17) (model II). The parameter H in case of cyclopropane being a key 
species is given simply as H = YAs (compare Eq. (24». Although the pellet was a cylinder the 
balance was solved for spherical symmetry (w = 2) since according to Aris5 the solution is 
expected to differ little from that for a cylinder. For the characteristic dimension 12 in the modulus 
M2 one then can take the radius of a spherical pellet having identical volume-to-outer-surface 
ratio as the real particle. (In our case this radius equals the radius of the cylinder.) The boundary 
value problems Eqs (22), (25), (26) (model I), or (27), (25), (26) (model II) were transformed into 
an initial value problem by the Weisz-Hicks method19 and integrated numerically on a computer 
using the Runge-Kutta-Merson technique. The obtained dimensionless concentration gradients 
on the surface of the pellet, c'(I), were then used to determine the effectiveness factors from Eqs 
(28) or (29). In region of strong internal diffusion the effectiveness factors were computed from 
Eqs (34) or (35). The tI:apezoid rule was used for numerical integration combined with Romberg's 
extrapolation formula2o. 

RESULTS AND DISCUSSION 

A comparison of the two models of the effect of internal diffusion on the rate of 
a multicomponent catalytic reaction (model I: Eq. (22) together with Eq. (15); 
model II: Eq. (27) together with Eq. (17)) with the experimental results ' was based 
on the effectiveness factor. The values of the effectiveness factors l'Jexp, were obtained 

1.0~--.-----r--.----'-----' 

~exp 0.6 

/ 
'1.xp 

0.4 

0.2 

0.6 

0.2L--_--'-_----'-__ -'--__ --'-___ ..J 0 
0.2 0.3 0.4 0.06 0.08 0.10 

YAs YAs 

FIG. 5 

Effectiveness Factor versus Reaction Mixture Composition 
a 20cC, p~ = p~ = 0·5 atm, b 40ce, p2 = 0·1 atm, p~ = 0·9 atm. 
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as a ratio of the experimental effective reaction rate to that in the kinetic reagion 
at concentrations corresponding to those of the reaction mixture surrounding the 
catalyst pellet. The reaction rates in the kinetic region were computed from Eqs (36) 
(for 20°e) or Eq. (37) (40°e). For illustration Fig. 5 plots l1exp for two series of experi
ments at constant hydrogen-to-cyclopropane ratio in the mixture entering the reactor 
versus the degree of conversion. From the figure it is apparent that the effectiveness 
factor in certain concentration regions depends strongly on composition of the am
bient mixture. 

Since neither the geometry constant of the catalyst (elq), nor the tortuosity (q) 
(and hence the effective diffusion coefficients DA) are known, neither the modulus M 
nor the effectiveness factor can be predicted for a given ambient concentration to test 
the experimental values of 11. To furnish a comparison of the theory with the experi
ment one thus has to take the opposite procedure, i.e. to solve the differential balance 
and construct the 112(M2) function for each experimental ambient concentration. 
The 112(M2) function then serves to read off the value of the modulus (Mexp) corres
ponding to the experimental effectiveness factor. From the definition of the modulus 
(Eq. (23)) then follows the value of the effective diffusion coefficient DA , and from 
Eqs (4) and (12) the value of the geometry constant el q, or q. The effective diffusion 
coefficients for both models were of the order 10- 3 cm2 js and their concentration 
dependence is shown in Fig. 6 for the same experimental runs as those in Fig. 5. 
The geometrical constant ejq can be found for both models of diffusion using ~ A 

evaluated both for the evarage radius 62 A and 836 A. It turns out that in some cases 
the former value of the average radius leads to elq > 1, while for the latter ejq < 1 
in all cases. As it is apparent that the presence of the porous matter causes the effective 

TABLE III 

e/q for Average Pore Radius 836 A. 

Quantity 

Mean value 

Variance 

95% Confidence 
limit (%)a 

a Related to the mean e/q. 

Temperature 
°C 

20 
40 

20 
40 

20 
40 
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Model I Model II 

0·118 0·177 
0·]01 0·127 

0·0198 00653 
0·0085 0·0175 

55·7 67·3 
61·3 69·8 
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diffusion coefficients to decrease below ~ A, the geometrical constants must be smaller 
than unity. The radius 62 A may thus be discarded and in the following only 836 A 
considered. The average values of e/q for this radius are summarized in Table III 
jointly with their variances and 95% confidence limits. As long as the description 
of internal diffusion is correct all experimental points should provide a single geo
metrical constant independent of the ambient concentration and temperature with 
a certain variance owing to the experimental error. From Table III it is seen that 
model .I based on Eq. (2) (i.e. on the balance in Eq. (22)) gives somewhat lower 
estimates of the geometrical constant than model II based on Eq. (3) (i.e. on the 
balance in Eq. (27)). The first of the models displays a better fit to the experiments. 

An alternative geometrical characteristics of a porous catalyst is the tortuosity q. 
In contrast to the constant e/q, however, one may find several values of the tortuosity 
for each model of the internal diffusion depending on which porosity e was used. 
The porosities which may be possibly used are: the total porosity of the catalyst, 
et, or the macro-pore porosity, ea. The micro-pore porosity was not considered 
separately since it . turned out that for the average pore radius 62 A the results of 
e/q were not consistent. The average tortuosities for the two porosities and model I 
are summarized in Table IV. Although the tortuosities for ea and et are numerically 
different, their standard deviations are equal. When using et the tortuosity in all 
experiments was q > 1, as expected; for the macro-pore porosity resulted in some 
cases q < 1 which is physically meaningless. The use of the total porosity seems 
therefore more suitable for calculation of the tortuosity. 

The variance of e/q or the tortuosity may originate in experimental error and from 
. inadequacy of the models of the effect of internal diffusion on the rate of catalytic 

°A· 103 )' b 8 

cm2/ s 

C 

2 
0.1 0.4 0.7 aoe 0.09 0.10 

YAs YAs 

FIG. 6 

Effective Diffusion Coefficient of Cyclopropane versus Reaction Mixture Composition 
a 20°C, pX = pg = o·s atm, b 40°C, pX atm = 0·1, pg = 0·9 atm. The points were computed 

from experimental data and model I (0 ) or model II (e). 

Collection Czechoslov. Chem. Commun. IVol. 38/ (1973) 



Effect of Internal Diffusion on Catalytic Reactions. XI. 3585 

reaction used. While the experimental error caused a random fluctuation around 
the mean the inadequacy of the model becomes manifest as a systematic deviation 
of 8jq or q in dependence on composition of ambient mixture. This is manifest 
in Fig. 7 plotting 8jq versus conversion of an equimolar mixture of cyclopropane 
and hydrogen at 20°C. From the figure it can be further seen that the geometrical 
constants obtained from model I display a weak concentration trend in contrast 
to those resulting from model II. Analogous trends displays also the tortuosity. 
The concentration dependence of 8jq or q remains present at 40°C, too. 

The concentration trends cannot be explained unambiguously for the complexity 
of the problem, but possible reasons are numerous: inadequate description of the 
multicomponent diffusion, the assumptions of the balance may not be met (e.g . 
the constancy of the total pressure within the pellet), the model of the porous catalyst 
may not be adequate, or, perhaps, inadequacy of the concentration relations for 
individual reacting species in a given position within the pellet. Fig. 8 plots the 
concentrations YB(YA) and Yc(Y A) computed from Eqs (15) and (J 7) used in models I 
and II. The figure shows also for comparison some more exact dependences computed 
by integrating the Stefan-Maxwell equations for the transition region of the diffusion. 
While YB(Y A) is not much different, the three approaches provide markedly different 
courses of yc(y A). Since the product of hydrogenolysis - propane - decreases the 
reaction rate it is clear that an incorrect expression for YC(YA) would result in an 
incorrect prediction of the effectiveness factor, 8jq and q. Since the concentration 
relations vary with composition of the ambient mixture, the effect will be different 

0.2.------,.-------,-----, 1.0..-----,----....----.-------,1.0 

£/q 

0.1 

0.1 0.3 0.5 0.7 

YAs 

FIG. 7 

e/q versus Reaction Mixture Composition 
20°C, P~ = pg = 0·5 atm. The points 

were computed from experimental data and 
model I (0) or model II (e). 
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FIG. 8 

Concentration Relations 
20D C, PAs = 0·75 atm, PBs = 0·25 atm. a 

YB = YB(YA) , b Yc = ycCYA) 1 Eq. (17), 2 
Eq. (I5), 3 The Stefan-Maxwell equation 
for transition region of diffusion. 
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TABLE IV 

Tortuosity for Average Pore Radius 836 A and Model I 

Quantity 

Mean value 

Variance 

95% Confidence 
limit (%)a 

Temperature 
°C 

20 
40 

20 
40 

20 
40 

11·6 
11-4 

100·4 
63·7 

40·3 
47·0 

For sa 

6·7 
6·2 

33·4 
19·0 

40·2 
46·9 

a Related to the mean q. 

in various concentration ranges which in turn may give rise to concentration trends 
of the geometrical constant. In this connection the question becomes that of the 
accuracy of determining the adsorption coefficient Kc, which, unlike those of cyclo
propane and hydrogen, was determined from a smaller number of experimental 
data 1,7. 

The relation between the scatter of the experimental geometrical constant and the 
deviation of the experimental and theoretical effectiveness factor could not be estim
ated in advance. For illustration we have therefore computed the mean deviation 
for model I and the pore radius 836 A using elq from Table III. At 200 e the deviation 
amounted to 0·12 (units of effectiveness factor), i.e. 20% reI., at 400 e 0·10, i.e. 23% 

reI. It is natural that the concentration trends of the geometrical constant bring about 
analogous trends in the deviations of the experimental and predicted effectiveness 
factors. 

LIST OF SYMBOLS 

~i 
~ij 
~ki 
Di 
fCc) 

relative stoichiometric coefficient 
change of mole number due to reaction, Eq. (J 3) 
reaction mixture component (reacting species i = 1, ... , p; inerts i = q, ... , n) 
total concentration of gas mixture 
dimensionless concentration of key species in porous pellet 
diffusion coefficient of Ai in muiticomponent reaction mixture 
binary diffusion coefficient of pair Ai-Aj 
Knudsen diffusion coefficient of Ai 
effective diffusion coefficient of Ai in multicomponent reaction mixture 
dimensionless reaction rate 
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feed rate of cyclopropane 
reaction enthalpy 
parameter, Eq. (24) 
reaction rate constant 
adsorption coefficient of Ai 
characteristic dimension of the catalyst pellet 
Thiele modulus, Eq. (23) 
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molar diffusion flux of Ai related to unit area of cross-section of porous pellet 
partial pressure of Ai 

Ri 
RA,eff 

~Tmax 
vi 
v= Mw(1- x) 
w 
w 
x 
X 

Yi 
Z 

A 
B 
C 

Subscripts 

inlet partial pressure 
tortuosity 
pore radius 
reaction rate of Ai per unit volume of catalyst pellet 
effective reaction rate of cyclopropane 
maximum temperature difference in the pellet 
thermal velocity of molecules Ai 
transformed coordinate 
geometrical coefficient (infinite slab w = 0, infinite cylinder w = 1, sphere w = 2) 
volume of pellet 
dimensionless coordinate 
conversion of cyclopropane 
mole fraction of Ai 
coordinate 
stoichiometric coefficient of Ai(lXj > 0 for products, lXi < 0 for reactants) 
porosity 
total porosity 
macro-pore porosity 
effective thermal conductivity of pellet 
effectiveness factor for geometry w 
effectiveness facto"r in region of strong internal diffusion 

reacting species 
cyclopropane 
hydrogen 
propane 
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